Series expansions without diagrams
نویسندگان
چکیده
منابع مشابه
Simulating Expansions without Expansions
We add extensional equalities for the functional and product types to the typed -calculus with not only products and terminal object, but also sums and bounded recursion (a version of recursion that does not allow recursive calls of infinite length). We provide a confluent and strongly normalizing (thus decidable) rewriting system for the calculus, that stays confluent when allowing unbounded r...
متن کاملFrom Truncated Series Expansions
Knowledge of a truncated Fourier series expansion for a discontinuous 2^-periodic function, or a truncated Chebyshev series expansion for a discontinuous nonperiodic function defined on the interval [-1, 1], is used in this paper to accurately and efficiently reconstruct the corresponding discontinuous function. First an algebraic equation of degree M for the M locations of discontinuities in e...
متن کاملTaylor Series and Asymptotic Expansions
There are several important observations to make about this definition. (i) The definition says that, for each fixed n, ∑n m=0 amx m becomes a better and better approximation to f(x) as x gets smaller. As x → 0, ∑m=0 amx approaches f(x) faster than x tends to zero. (ii) The definition says nothing about what happens as n → ∞. There is no guarantee that for each fixed x, ∑n m=0 amx m tends to f(...
متن کاملTaylor Series and Asymptotic Expansions
There are several important observations to make about this definition. (i) The definition says that, for each fixed n, ∑n m=0 amx m becomes a better and better approximation to f(x) as x gets smaller. As x → 0, ∑m=0 amx approaches f(x) faster than x tends to zero. (ii) The definition says nothing about what happens as n → ∞. There is no guarantee that for each fixed x, ∑n m=0 amx m tends to f(...
متن کاملPerturbative Results without Diagrams
Higher-order perturbative calculations in Quantum (Field) Theory suffer from the factorial increase of the number of individual diagrams. Here I describe an approach which evaluates the total contribution numerically for finite temperature from the cumulant expansion of the corresponding observable followed by an extrapolation to zero temperature. This method (originally proposed by Bogolyubov ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 1994
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.49.2445